Modeling the latent structure of cannabis use disorders: Evidence from an Australian population sample

Tim Slade1, Rachel Grove1, Orla McBride2.
1. National Drug and Alcohol Research Centre, University of New South Wales, AUSTRALIA; 2. Department of Epidemiology, Michigan State University, USA

INTRODUCTION

• Cannabis Use Disorders (CUDs) are clinically heterogeneous1.
• This variation between cases may hamper efforts to identify risk factors, evaluate treatment and predict prognosis
• Latent variable analyses can help to identify homogeneous groups of people
• Past focus has been on identifying optimal numbers of latent factors or latent classes with conflicting results2, 3.
• Newer techniques (factor mixture modeling4) examine the fit of meaningful combinations of factors and classes

METHODS

• Factor mixture modeling was carried out on self-reported symptoms of CUDs
• Data came from the 2007 National Survey of Mental Health and Wellbeing, a large epidemiological survey of psychiatric disorders in the adult population5 (n=8841, aged 16-85)
• Symptoms were collected with the World Mental Health version of the Composite International Diagnostic Interview
• A sub-sample of lifetime cannabis users were analyzed (n=1639)
• 10 different models were fit (see below)

RESULTS

• While the two factor (abuse dependence) FA model fit best the correlation between factors was extremely high (0.921)
• The three class LCA fit best with classes defined largely by different rates (but not patterns) of symptom endorsement
• There was inconsistency in the evidence for the best fitting FMM model
• Some fit indices pointed to the FMM model with three classes and a single (severity) factor within each class
• Others pointed to the model with one zero class and a single (severity) factor

DISCUSSION

• When comparing all models together a simple unidimensional model was the best fit to the data
• Mixture models did not provide a superior conceptualization
• However, mixture models mean researchers are no longer forced to choose between purely dimensional and purely categorical models

2. Blanco et al. (2007). Drug and Alcohol Dependence

a The spectrum of latent structure as conceptualized by Masyn et al. (2010)6.

Factor Analysis – how many continuous latent dimensions best explain the observed symptoms of CUDs?
Factor Mixture Modeling – what combination of dimensions and classes best explain the observed symptoms of CUDs?
Latent Class Analysis – how many categorical latent classes best explain the observed symptoms of CUDs?

Continuous latent CUD factor(s)
Continuous latent CUD factor(s)
Categorical latent CUD classes

Model 1: One factor (simple unidimensional structure)
Model 2: Two factors (related to abuse and dependence)
Model 3: One factor, One class + zero class (no symptoms)
Model 4: One factor, Two homogeneous classes
Model 5: One factor, Two class + zero class (no symptoms)
Model 6: One factor, Three homogeneous classes
Model 7: Two homogeneous classes
Model 8: Three homogeneous classes
Model 9: Four homogeneous classes
Model 10: Five homogeneous classes